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FOREWORD
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and technical direction of AFFDL and the Air Force Materials
Laboratory, WPAFB, Ohio, 45433. The work was performed under
Contract F33615-72-C-2149, Flight Dynamics Laboratory Project
Number 486U, "Advanced Metallic Structures: Air Superiority
Fighter Wing Design for Improved Cost, Weight and Integrity."
Mr. Lawrence R. Phillips of AFFDL is the Air Force Project
Engineer.

These studies were performed by the Structural Design Group,
Convair Aerospace Division of General Dynamics, Fort Worth Oper-
ation with D. F. Davis as the Program Manager. Other principal
participants in the program are as follows: R. W. McAnally,
Structural Design; E. W. Gomez, Stress Analysis; J. W. Morrow,
Fatigue and Fracture Analysis; J. M. Shults, Materials Engineer-
ing; T. E. Henderson, Mass Properties; J. D. Jackson, Value
Engineering; J. L. McDaniel, Manufacturing Engineering; B. G. W.
Yee, Nondestructive Inspection; D. Duncan, Quality Assurance;
H. E. Bratton, Information Transfer; and R. L. Jones, Engineer-
ing Test Laboratory.

The work was performed from June 1972 to June 1973 and was

released for publication June 1973.

This report has been reviewed and is approved.

JOHN C. FRISHETT, Major, USAF
Program Manager, AMS Program Office
Structures Division
Air Force Flight Dynamics Laboratory
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A B S T R A C T

This report describes the preliminary design and
analysis for an Advanced Air Superiority Fighter Stores
Loaded, Wet Wing Structure. The wing box of the F-lllF
airplane designed by the Convair Aerospace Division of
General Dynamics was used as the baseline vehicle.

A unique design methodology was followed to arrive
at three configurations which offer an optimum balance
between structural efficiency and technological advancement.
This methodology consists of compiling element concepts;
integrating them into cross-section drawings; optimizing
them in analytical assemblies; and finally preparing full
wing box designs. Each step was followed with a detailed
evaluation and ranking step which utilized a formal merit
rating system. This system permitted the evaluation of
numerous concepts and insured that each technical discipline
participated in the design selection.

A subsequent program is proposed to evaluate the
capability of the selected design to meet the overall
program goals of advancing technology without significantly
affecting costs. The subsequent program involves additional
preliminary design, a development test program, detail design,
manufacture, and tests; including static, fatigue, and damage
tolerance testing. Information generated during this effort
will be disseminated to the Air Force and industry in general
through an intensive information transfer effort.

iii/iv
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S E C T I 0 N I

I N T R 0 D U C T 1 0 N

The main thrust of the Advanced Development Programs
is aimed at ensuring USAF air superiority in the 1980's
(reference Figure 1).

The measure of superiority or the degree to which
USAF vehicles will dominate the air in the 1980's will de-
pend on the ingenuity, diversity, significance and direct
applicability of the aero-technology advancements that are
made in the immediate future (reference Figure 2).

Technology is advancing in the fields of weaponry,
electronics, aerodynamics and propulsion. In order that
airframe characteristics not penalize the overall capability
of the integrated weapons system of the future, Aero-
Structures Technology must keep pace with other advancing
technologies in the areas of:

o Minimum Weight/Performance

o Production/Operational Cost

o Strength/Safety

o Vehicle Life/Durability

o Maintainability/Inspectability

o Operational Dependability/Reliability

Achieving significant improvements in these design para-
meters requires that significant technological advancements
be made in:

o The Inception of New and Innovative Concepts in
Structural Design

o Fracture Mechanics

o Stress Analysis Methods

o Fatigue Analysis Methods.
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o New Materials and Definition of Their Structural

Capabilities

o Manufacturing Methods

o Non-Destructive Inspection Techniques

o Weight/Strength and Cost Optimization Procedures

o The Overall Engineering Methodology and Management

Approach to Integrate These Technology Advancements

Into a Superior Airframe Structural Design/Opera-

tional Vehicle

o Dissemination of Technical Information to the

Concerned Agencies of the Government and the Air-

craft Industry.

These areas are displayed schematically in Figure 3.

Historically, airframe technological advancement and

development of new structural concepts and materials have

been a part of major hardware procurement programs. This

approach to airframe technological advancement has resulted

in a high degree of risk being associated with achieving

program goals such as:

o Schedule

o Overall Program Costs

o Vehicle Weight/Performance Goals

o Airframe Fatigue Life Requirements

o Vehicle Maintenance & Operational Costs

Examples where technological advancement during major programs

was costly are:

o The use of 7079 AL alloy in some B-52 models,

B-58, and many other vehicles before the stress

corrosion cracking characteristics of the material

were determined.
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o Brazing and weld joining of stainless steel wing
panels during the B-70 program.

o Certain applications of D6AC steel in the F-111
before damage tolerance characteristics were
determined for the new alloy.

Where the risk of program success is reduced by utilizing
only past technology - the result is a vehicle with little
improvement in capability or performance over existing
vehicles of the USAF or other air powers (reference Figure
4).

The successful Flight Dynamics Laboratory execution of
the current ADP program will:

o Provide improved structural technology consistent
with requirements of future superior vehicles.

o Provide technology advancements to future fleets
at a small fraction of the cost required to make
the advancements during a production program.

o Provide the technology in advance of future planned
programs so as not to incur high risks and costs in
those programs.

o Further define the tensile, fatigue, stress corro-
sion cracking and crack growth characteristics of
new aircraft materials, such as 7050 & 7475 alumi-
num, 8-8-2-3 titanium, and 10 NI-2CR-MO-8CO steel.

o Determine the feasibility, applicability, limita-
tions, advantages and problems of using these
materials in advanced aircraft structures.

o Select applications for and continue development
of advanced manufacturing methods for aircraft
structures in areas such as welding, brazing,
adhesive bonding, diffusion bonding, other joining
techniques, machining, diffusion molding, creep
forming, taper rolling, taper and integral stiffened
panel extruding, and isothermal and precision
forging.
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o The applicability of advanced NDI methods is
being determined. The areas requiring further
development of NDI methods will be defined.

o Advanced stress analysis and fatigue analysis
methods and criteria are being employed and
perfected.

o Advanced fracture mechanics analysis methods are
being utilized and integrated into the design at
the preliminary design phase of the program.

o Realistic service life criteria for an advanced
air superiority fighter are being developed that
will assure safe, reliable structure with a
negligible effect on weight and cost.

o Advanced costing techniques are being exercised
and developed. Projected costs for airframe
production quantities will be determined for the
1975-1985 time frame.

o New and innovative concepts in aircraft structures
are being conceived, defined, and evaluated.
Over 100 concepts have been defined and evaluated.

The Advanced Fighter Wing ADP Program goal is:

Apply innovative effort and new technology to develop
an Advanced Metallic Wing Structure that will afford
a significant reduction in weight while maintaining
cost approximately equivalent to the base line article.

The relationship between this goal and the other ADP programs
is demonstrated by Figure 5.

During pursuit of the program goals, various areas
of structures technology were exploited and advancements
resulted. These areas were: the creation of new and
innovative concepts in structural design, fracture mechanics,
stress analysis methods, fatigue analysis methods, new
materials and definition of their structural capabilities,
manufacturing methods, non-destructive inspection techniques,
weight/strength and cost optimization procedures (reference
Figure 6).
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The F-111F aircraft was chosen as the baseline for the
program because it represents current state-of-the-art in
structures technology. Its flight envelope and range ex-
ceed that of all other USAF operational fighters from Sea

Level altitude to the stratosphere. The F-111 wing box,
shown in Figure 7 is the baseline component for this
program.

The F-111F airframe has been designed and tested to
the requirements of the MIL-A-8860 series specifications,
and the entire F-111F program effort has been conducted
in accordance with the intent of the ASIP as described in
TR66-57. Extensive service experience data, reflecting
over 150,000 flight hours, are available on the F-1ll.

The F-111F is a long-range fighter with the capability
of Mach 1.2 flight at low level and Mach 2.5 at high alti-
tude. It should be emphasized that the F-111F wing is
highly representative of current structures technology
(reference Figure 8).

Nine designs have been developed during the program
to meet the goals shown in Figure 9 . At least one of
these designs provides a weight reduction of 157. while
maintaining cost equal to or below the baseline; at least
one design provides a 157. cost reduction over the baseline
at Airplane #506 while maintaining weight equal to or below
the baseline; and, the other configurations developed show
savings between these two goals.

Perhaps the most important result of this program has
been the development of an overall engineering methodology
and'management approach to integrate technology advance-
ments into a superior airframe structure for a future
aircraft,

11
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SECTION II

PROGRAM SUMMARY

The objectives set for this program have been met
successfully through utilization of systematic and inno-
vative techniques.

2.1 OBJECTIVES AND APPROACH

The objective of this program is to develop and
demonstrate new and/or improved manufacturing, materials,
and structures technologies that meet the requirements of
future Air Force fighter system.

The specific objective of Phase IA of the program
has been to develop advanced metallic structural concepts
that will afford a reduction in the weight of fighter
wings while maintaining cost and life expectancy approximately
equivalent to the baseline article.

More specifically, goals of 15% weight reduction on
at least one design and 15% cost reduction on at least onedesign were established. These goals have been met as
described in the body of the report and as summarized in
Table I.

The highly innovative and successful approach tomeeting these goals is described fully in the body of the
report and is summarized schematically in Figure 10.

2.2 GENERAL PROGRAM RESULTS

Several wing box configurations were defined in
advanced aluminum alloys that save weight and reduce cost
when compared to the baseline structure.

One aluminum design saves 24.0% weight and reduces
the cost by 13.8%. Another aluminum design with an 18.9
weight savings, reduced costs by 15.7.

15



z z
H- 0 H-4 Qz

E-4-

oU u

0Z4
00 L4 H

cn r-40-4 r-

o o 0 U94

V- -4 r4

>4U

rz

A 00
-l 0 CQ

H 0 u 0

v-4

zH 00on0cn 1-4 H1-)

0 1-E4E-

2 E-4 C0E

< 1-4 < R

0Z1 Ol H

16



a.~ LLJ WjL
cr-

u-iz z

wzw
CD Zuj~ M. 4

IL U

LA 03 00 0-

.. LLJ OL

N LLJJ

_ 
1 0cn
LJ UJ c L.z u

ZCfL U,uic

_U LLLJ ~
w 0.
-i V)V;.N

u.jI F C 003

Z Z CC~ C
0 <i

wLLU

C-LI...LJ

> a 0

cc - J iS
I>- C

V)L LL z > 4 r.
UJ C, - C

0

D-l -c) pV

0 z
_) Z ~ f -

Z LLI < 9 z

LA- UUJ U- Z~L~ FZj
~LJUJ

cc a J-C:
c C) A(n 0uj UJ C-

>( C. .. 0< L A 4- 1u1111
m U )u

cc Z_ C-3 U)
_ __ Y I

< 0 cn



Three wing box configurations were defined in high
strength titanium alloy, titanium designs showed greater
weight savings than aluminum designs but an increase in
cost resulted on all titanium designs. For example, the
highest ranking titanium design saved 38.8% weight with a
cost increase of 31.0%. It should be noted, however, that
the weight savings potential of advanced titanium configura-
tions are of a sufficient magnitude to allow reducing the
size of an aircraft during its preliminary design phase when
designed to fixed mission requirements. Aircraft cost
savings as a result of reduction in aircraft size will
offset the increase in airframe cost as a result of con-
figuring of advanced titanium in lieu of aluminum.

The careful screening and evaluation that has been
conducted indicates that weight savings can be attained
even though severe fracture control is imposed. The weight
savings have been achieved largely by elimination of
fastener holes through the lower surface in order to attain
maximum utilization of the latest metallic material tension
properties. CpIculptions in pArpgrpph V.7, Appendix V,
illustrAte this point.

The successful results of this program are to a large
extent attributable to the systematic design approach
employed during the program. Figure 10 depicts the
design approach employed during the program.

Analytical compliance with the most recent Air Force
fatigue and damage tolerance requirements has been em-
phasized throughout a unique and systematic preliminary
design process directed toward the development of Advanced
Air Superiority Fighter wing concepts. The products of
this effort are a substantial number of highly efficient
full wing designs utilizing materials and fabrication
techniques not yet fully proven but having unlimited
potential. The risks associated with these technology
advancements have been identified, and the feasibility of
demonstrating their compliance with fatigue and damage
tolerance requirements has been planned for implementation
in subsequent phases of this program.
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2.3 SPECIFIC PROGRAM RESULTS

A very useful method for preliminary structural
analysis has evolved from the various analysis - evaluation
steps followed in this program. This method can be follow-
ed, with the aid of examples, in Section V.

Several highly innovative structural concepts have
been analyzed and evaluated using flight measured loadings
and using the latest available techniques for fracture
control. These concepts include:

Elimination of traditional lower surface fasteners for
reduced stress concentration.

Planked, laminated lower skin panels for multiple load
paths,crack arrest and reduction in crack growth rate.

Wide, corrugated, spars to reduce panel unsupported
width and to increase panel edge restraint.

" Scalloped skin/spar shear tabs for skin attachment
without holes through outer surface.

" Spanwise fuel flow holes to reduce stress concentrations
which would be more pronounced with chordwise fuel
transfer holes.

The improvement in fatigue quality and damage tolerance
characteristics resulting from elimination of fastener systems
in primary wing structure has permitted use of higher stresses
and thereby reduced weight. These weight reductions have been
analytically demonstrated during this program.

An extensive evaluation of the detailed damage tol-
erance requirements being proposed by the Air Force as a
revision to MIL-A-8866A has been made in Phase IA. The
requirements for slow crack growth structure were ex-
ercised on the baseline structure using sensitivity studies
to lend visibility to the impact of variation in the many
parameters influencing damage tolerance assessment. The
requirements for fail safe structure were applied to the
Phase IA preliminary wing designs to achieve minimum
weight structure and structural integrity as a reasonable
cost. These goals are often incompatible.
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In its present form, the damage tolerance criteria is

technically feasible but often awkward to interpret and

apply. This is primarily true of the requirements for fail

safe structure which are presently separated with respect

to multiple load path and crack arrest. Many of the re-

quirements specified for these two classifications overlap

and are difficult to apply to design concepts utilizing

both damage tolerance features. The criteria is also

directed toward traditional sheet/stringer construction

with regards to damage assumptions following primary load

path failure, crack arrest, or inservice inspections.

Application of these damage requirements, as well as those

for assumed damage in intact new structure, is very ambig-

uous for thin sheet laminated structure. The assumption

made for analysis of laminated structure in this report

(paragraph 7.4) was that each ply constituted a load path

and that complete failure of the laminate involved failure

of successive plies.

It is also felt that specific attention should be

given to requiring that basic fracture data for laminates
be obtained when they are used rather than data for only

the ply material comprising the laminate.

Additional intepretation is needed regarding assumed

initial flaws, particularly in thin sheet structure, to

alleviate the present contractor responsibility (at added

cost to the Air Force) of defining the worst flaw shape
and size.

The words, "experimentally verified," should be added

to the requirements in connection with spectrum retardation

effects, due to its dependence on spectrum shape and content

(and possibly type of material).

The criteria itself would be easier to use if, after

classifying a structure fail safe or monolithic, the re-

quirements for that classification were a separate entity

without cross referencing.

Cost and weight differences between the baseline and

the various concepts are summarized in Table II to docu-

ment sources of savings. Specific numerical comparisons

with the baseline are shown.
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2.4 POTENTIAL TECHNOLOGY ADVANCES

Several Preliminary Design Drawings in Appendix IV
utilize the concept of laminating and planking for fail-safe
characteristics and to reduce crack growth rate and the
likelihood of crack growth through the skin thickness.

This concept, if tests verify these desired charac-
teristics, offers versatility in design by allowing
selective placement of load paths to be coordinated with
options for fabrication. Additionally, the Bi-metallic
concept of 610-123 and 610-130 (in Appendix I) offers
potential in reducing tensile stresses on the outer sur-
faces of skins.

The integration of the following four factors into
brazed or bondeddesign concepts for primary wing box
structure has the potential of achieving significant
weight reductions while still meeting stringent fatigue
and damage tolerance criteria:

(1) All fasteners through the lower surface are
eliminated by the use of bonded or brazed joints.

(2) Reduced crack growth rates are achieved in high
strength 8-8-2-3 titanium and 6AL-4V STA alloys
by utilizing brazed laminated sheet.

(3) Reduced crack growth rates are achieved in alum-
inum alloys by utilizing bonded laminated sheet.

(4) The high strength of the STA titanium is retained
by use of a low temperature brazing alloy, as yet
undeveloped but very feasible.

Brazing has been exploited in the Preliminary Designs
of Appendix IV. Existing technology relies on furnace
heating with possible use of inert gas ambient, 610RW002
and 610RW006 reply on this process and a low temperature
(approximately 11000F) brazing alloy. The potential exists
for brazing by applying heat internally by a recirculating
inert fluid and using fixtures and insulators externally.
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